

MVX 1000 4T VT - SAE 15W-60

100 %synthetic PAO/ESTER engine oil for 4-stroke motorbike engines

USES

Specifically designed for engines with a large cylinder capacity (big V-twins or parallel, single cylinder). Meets the requirements of Indian Motorcycle engines (e.g. Challenger, FTR 1200, Scout). Compatible with catalytic converters.

Provides perfect engine protection, even under extremely **severe service conditions**, **all year round**.

Also suitable for integrated gearboxes, ensuring increased protection of the clutch/gear unit (JASO MA2).

Specifications:

JASO MA2 API SN

MAIN PHYSICAL DATA

•	Methods	Units	15W-60
Density at 20°C	ASTM D4052	kg/m³	855
Kinematic viscosity at 40°C	ASTM D445	mm²/s	162
Kinematic viscosity at 100°C	ASTM D445	mm²/s	23.9
Viscosity index	ASTM D2270		179
Pour point	ASTM D97	°C	-36
Cleveland Open Cup Flash Point	ASTM D92	°C	242
Dynamic viscosity at -20°C	ASTM D5293	mPa⋅s	4530
HTHS Viscosity at 150 °C	CEC L-036-90	mPa⋅s	3.7 mini
Sulphated ash	ASTM D874	% mass	0.8
Total Base Number (TBN)	ASTM D2896	mgKOH/g	7.1

The data given in this table represents typical production values and should not be taken as specifications.

PROPERTIES & ADVANTAGES

- ► SAE 15W60 grade for reduced oil consumption and perfect lubrication at high temperatures.
- ► Good detergent-dispersant properties prevent the formation of deposits.
- ► Specific additives prevent clutch slippage.
- ▶ Very good protection of the engine and gearbox against wear.
- ▶ Maintains engine performance in line with the original standards whilst ensuring optimal protection against the formation of deposits.

